Stanford University Department of Electrical Engineering
Abstract:Long-horizon omnimodal question answering answers questions by reasoning over text, images, audio, and video. Despite recent progress on OmniLLMs, low-resource long audio-video QA still suffers from costly dense encoding, weak fine-grained retrieval, limited proactive planning, and no clear end-to-end optimization.To address these issues, we propose OmniRAG-Agent, an agentic omnimodal QA method for budgeted long audio-video reasoning. It builds an image-audio retrieval-augmented generation module that lets an OmniLLM fetch short, relevant frames and audio snippets from external banks. Moreover, it uses an agent loop that plans, calls tools across turns, and merges retrieved evidence to answer complex queries. Furthermore, we apply group relative policy optimization to jointly improve tool use and answer quality over time. Experiments on OmniVideoBench, WorldSense, and Daily-Omni show that OmniRAG-Agent consistently outperforms prior methods under low-resource settings and achieves strong results, with ablations validating each component.
Abstract:As digital environments (data distribution) are in flux, with new GUI data arriving over time-introducing new domains or resolutions-agents trained on static environments deteriorate in performance. In this work, we introduce Continual GUI Agents, a new task that requires GUI agents to perform continual learning under shifted domains and resolutions. We find existing methods fail to maintain stable grounding as GUI distributions shift over time, due to the diversity of UI interaction points and regions in fluxing scenarios. To address this, we introduce GUI-Anchoring in Flux (GUI-AiF), a new reinforcement fine-tuning framework that stabilizes continual learning through two novel rewards: Anchoring Point Reward in Flux (APR-iF) and Anchoring Region Reward in Flux (ARR-iF). These rewards guide the agents to align with shifting interaction points and regions, mitigating the tendency of existing reward strategies to over-adapt to static grounding cues (e.g., fixed coordinates or element scales). Extensive experiments show GUI-AiF surpasses state-of-the-art baselines. Our work establishes the first continual learning framework for GUI agents, revealing the untapped potential of reinforcement fine-tuning for continual GUI Agents.
Abstract:Large Language Models (LLMs) often hallucinate, generating content inconsistent with the input. Retrieval-Augmented Generation (RAG) and Reinforcement Learning with Human Feedback (RLHF) can mitigate hallucinations but require resource-intensive retrieval or large-scale fine-tuning. Decoding-based methods are lighter yet lack explicit hallucination control. To address this, we present Token-Guard, a token-level hallucination control method based on self-checking decoding. Token-Guard performs internal verification at each reasoning step to detect hallucinated tokens before they propagate. Candidate fragments are further evaluated in a latent space with explicit hallucination risk scoring, while iterative pruning and regeneration dynamically correct detected errors. Experiments on HALU datasets show Token-Guard substantially reduces hallucinations and improves generation accuracy, offering a scalable, modular solution for reliable LLM outputs. Our code is publicly available.
Abstract:High-performance attention kernels are essential for Large Language Models. This paper presents analysis of CuTile-based Flash Attention memory behavior and a technique to improve its cache performance. In particular, our analysis on the NVIDIA GB10 (Grace Blackwell) identifies the main cause of L2 cache miss. Leveraging this insight, we introduce a new programming technique called Sawtooth Wavefront Reordering that reduces L2 misses. We validate it in both CUDA and CuTile, observing 50\% or greater reduction in L2 misses and up to 60\% increase in throughput on GB10.
Abstract:Intent-Based Networking (IBN) allows operators to specify high-level network goals rather than low-level configurations. While recent work demonstrates that large language models can automate configuration tasks, a distinct class of intents requires generating optimization code to compute provably optimal solutions for traffic engineering, routing, and resource allocation. Current systems assume text-based intent expression, requiring operators to enumerate topologies and parameters in prose. Network practitioners naturally reason about structure through diagrams, yet whether Vision-Language Models (VLMs) can process annotated network sketches into correct optimization code remains unexplored. We present IntentOpt, a benchmark of 85 optimization problems across 17 categories, evaluating four VLMs (GPT-5-Mini, Claude-Haiku-4.5, Gemini-2.5-Flash, Llama-3.2-11B-Vision) under three prompting strategies on multimodal versus text-only inputs. Our evaluation shows that visual parameter extraction reduces execution success by 12-21 percentage points (pp), with GPT-5-Mini dropping from 93% to 72%. Program-of-thought prompting decreases performance by up to 13 pp, and open-source models lag behind closed-source ones, with Llama-3.2-11B-Vision reaching 18% compared to 75% for GPT-5-Mini. These results establish baseline capabilities and limitations of current VLMs for optimization code generation within an IBN system. We also demonstrate practical feasibility through a case study that deploys VLM-generated code to network testbed infrastructure using Model Context Protocol.
Abstract:We prove that Thompson sampling exhibits $\tilde{O}(σd \sqrt{T} + d r \sqrt{\mathrm{Tr}(Σ_0)})$ Bayesian regret in the linear-Gaussian bandit with a $\mathcal{N}(μ_0, Σ_0)$ prior distribution on the coefficients, where $d$ is the dimension, $T$ is the time horizon, $r$ is the maximum $\ell_2$ norm of the actions, and $σ^2$ is the noise variance. In contrast to existing regret bounds, this shows that to within logarithmic factors, the prior-dependent ``burn-in'' term $d r \sqrt{\mathrm{Tr}(Σ_0)}$ decouples additively from the minimax (long run) regret $σd \sqrt{T}$. Previous regret bounds exhibit a multiplicative dependence on these terms. We establish these results via a new ``elliptical potential'' lemma, and also provide a lower bound indicating that the burn-in term is unavoidable.
Abstract:Human-defined creativity is highly abstract, posing a challenge for multimodal large language models (MLLMs) to comprehend and assess creativity that aligns with human judgments. The absence of an existing benchmark further exacerbates this dilemma. To this end, we propose CreBench, which consists of two key components: 1) an evaluation benchmark covering the multiple dimensions from creative idea to process to products; 2) CreMIT (Creativity Multimodal Instruction Tuning dataset), a multimodal creativity evaluation dataset, consisting of 2.2K diverse-sourced multimodal data, 79.2K human feedbacks and 4.7M multi-typed instructions. Specifically, to ensure MLLMs can handle diverse creativity-related queries, we prompt GPT to refine these human feedbacks to activate stronger creativity assessment capabilities. CreBench serves as a foundation for building MLLMs that understand human-aligned creativity. Based on the CreBench, we fine-tune open-source general MLLMs, resulting in CreExpert, a multimodal creativity evaluation expert model. Extensive experiments demonstrate that the proposed CreExpert models achieve significantly better alignment with human creativity evaluation compared to state-of-the-art MLLMs, including the most advanced GPT-4V and Gemini-Pro-Vision.
Abstract:Despite the explosive growth of AI and the technologies built upon it, predicting and inferring the sub-optimal behavior of users or human collaborators remains a critical challenge. In many cases, such behaviors are not a result of irrationality, but rather a rational decision made given inherent cognitive bounds and biased beliefs about the world. In this paper, we formally introduce a class of computational-rational (CR) user models for cognitively-bounded agents acting optimally under biased beliefs. The key novelty lies in explicitly modeling how a bounded memory process leads to a dynamically inconsistent and biased belief state and, consequently, sub-optimal sequential decision-making. We address the challenge of identifying the latent user-specific bound and inferring biased belief states from passive observations on the fly. We argue that for our formalized CR model family with an explicit and parameterized cognitive process, this challenge is tractable. To support our claim, we propose an efficient online inference method based on nested particle filtering that simultaneously tracks the user's latent belief state and estimates the unknown cognitive bound from a stream of observed actions. We validate our approach in a representative navigation task using memory decay as an example of a cognitive bound. With simulations, we show that (1) our CR model generates intuitively plausible behaviors corresponding to different levels of memory capacity, and (2) our inference method accurately and efficiently recovers the ground-truth cognitive bounds from limited observations ($\le 100$ steps). We further demonstrate how this approach provides a principled foundation for developing adaptive AI assistants, enabling adaptive assistance that accounts for the user's memory limitations.




Abstract:Using effective generalization capabilities of vision language models (VLMs) in context-specific dynamic tasks for embodied artificial intelligence remains a significant challenge. Although supervised fine-tuned models can better align with the real physical world, they still exhibit sluggish responses and hallucination issues in dynamically changing environments, necessitating further alignment. Existing post-SFT methods, reliant on reinforcement learning and chain-of-thought (CoT) approaches, are constrained by sparse rewards and action-only optimization, resulting in low sample efficiency, poor consistency, and model degradation. To address these issues, this paper proposes Thought-Centric Preference Optimization (TCPO) for effective embodied decision-making. Specifically, TCPO introduces a stepwise preference-based optimization approach, transforming sparse reward signals into richer step sample pairs. It emphasizes the alignment of the model's intermediate reasoning process, mitigating the problem of model degradation. Moreover, by incorporating Action Policy Consistency Constraint (APC), it further imposes consistency constraints on the model output. Experiments in the ALFWorld environment demonstrate an average success rate of 26.67%, achieving a 6% improvement over RL4VLM and validating the effectiveness of our approach in mitigating model degradation after fine-tuning. These results highlight the potential of integrating preference-based learning techniques with CoT processes to enhance the decision-making capabilities of vision-language models in embodied agents.
Abstract:Medical foundation models (FMs) have shown tremendous promise amid the rapid advancements in artificial intelligence (AI) technologies. However, current medical FMs typically generate answers in a black-box manner, lacking transparent reasoning processes and locally grounded interpretability, which hinders their practical clinical deployments. To this end, we introduce DeepMedix-R1, a holistic medical FM for chest X-ray (CXR) interpretation. It leverages a sequential training pipeline: initially fine-tuned on curated CXR instruction data to equip with fundamental CXR interpretation capabilities, then exposed to high-quality synthetic reasoning samples to enable cold-start reasoning, and finally refined via online reinforcement learning to enhance both grounded reasoning quality and generation performance. Thus, the model produces both an answer and reasoning steps tied to the image's local regions for each query. Quantitative evaluation demonstrates substantial improvements in report generation (e.g., 14.54% and 31.32% over LLaVA-Rad and MedGemma) and visual question answering (e.g., 57.75% and 23.06% over MedGemma and CheXagent) tasks. To facilitate robust assessment, we propose Report Arena, a benchmarking framework using advanced language models to evaluate answer quality, further highlighting the superiority of DeepMedix-R1. Expert review of generated reasoning steps reveals greater interpretability and clinical plausibility compared to the established Qwen2.5-VL-7B model (0.7416 vs. 0.2584 overall preference). Collectively, our work advances medical FM development toward holistic, transparent, and clinically actionable modeling for CXR interpretation.